
Direct Methods for Solving
Sparse Linear Systems of Equations

Esmond G. Ng
(EGNg@lbl.gov)

Lawrence Berkeley National Laboratory

[with input from Xiaoye S. Li (XSLi@lbl.gov, http://www.nersc.gov/~xiaoye)]

E.G. Ng / 2

Sparse Linear Systems of Equations

q Linear systems arise frequently in large-scale scientific and
engineering calculations.

q Examples:
§ Accelerator physics.
§ Chemical process simulations.
§ Device and circuit simulations.
§ Earth and environmental sciences.
§ Fusion energy.
§ Structural analysis.
§ Structural biology.

q The coefficient matrices tend to be large and sparse.
§ Large: common for n > 100,000.
§ Sparse: most entries are zero.

E.G. Ng / 3

Gaussian Elimination

q Given a system of linear equations Ax = b.
q Consider direct solutions using Gaussian elimination.

q First step of Gaussian elimination:

q Repeat Gaussian elimination on C ...
q Result in a factorization A = LU
§ L unit lower triangular, U upper triangular.

q Then x is obtained by solving two triangular systems.

T T T1 0w w vwA ; C B
v / Iv B 0 C

 α α
= = = − α α

E.G. Ng / 4

Sparse Gaussian Elimination

q For sparse A:

q Gaussian elimination can destroy the zeros.
q Consider C = B − vwT/α.
q Suppose Bij = 0. Then Cij ≠ 0 if vi and wj are both nonzero.

× × × × × × × × × ×
 × ×

× ×

 × ×
× ×

 × ×
 × ×

× ×

 × ×

× ×

×
 × × × × ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

× × × ⊗ × ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

 × × × ⊗ ⊗ × ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
× × × ⊗ ⊗ ⊗ × ⊗ ⊗ ⊗ ⊗ ⊗

→ × × × ⊗ ⊗ ⊗ ⊗ × ⊗ ⊗ ⊗ ⊗
 × × × ⊗ ⊗ ⊗ ⊗ ⊗ × ⊗ ⊗ ⊗

× × × ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × ⊗ ⊗

 × × × ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × ⊗

× × × ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ×

A has O(n) nonzero entries.

L and U has O(n2) nonzeros entries.

E.G. Ng / 5

Sparse Gaussian Elimination

q Gaussian elimination can destroy the zero entries.
§ The new nonzero entries are fill entries.

× × × ×
 × × × ×

× × × ×
 × × × ×

× × × ×
→ × × × ×

 × × × ×
 × × × ×
 × × × ×

×

× × × × × × × × × × × ×
 × × × ×

× × × ×

 × × × ×
× × × ×

 × × × ×
 × × × ×
 × × × ×
 × × × ×

× × × × × × × × × × × ×

A, L, U have O(n) nonzero entries.

E.G. Ng / 6

63,454/190,791/120,206 7,310/56,680/14,572

Fill Depends on Sparsity Structure

E.G. Ng / 7

Issues in Sparse Matrix Algorithms

q Control the number of zero entries that turn into nonzero.
§ Sparsity structure of the LU factors depends on sparsity

structure of A, which can be changed by permuting its rows/cols.
§ Ordering.

q Predict which zero entries will turn into nonzero.
§ Symbolic factorization.

q Design a storage scheme to store only the nonzero entries.
§ Data structures.

q Find a way to manipulate only the nonzero entries in sparse
matrix factorizations.
§ Numerical algorithms.

E.G. Ng / 8

Dense vs Sparse Gaussian Elimination

q Dense Gaussian elimination: Pr A Pc = L U.
§ Pr and Pc are chosen to maintain numerical stability.
§ For partial pivoting, Pc = I.

q Sparse Gaussian elimination: Pr A Pc = L U.
§ Pr and Pc are chosen to maintain numerical stability and preserve

sparsity.

E.G. Ng / 9

Sparse Gaussian Elimination

q Ingredients in the solution of sparse linear systems:

§ Ordering step:
® Permute equations and variables to reduce fill in L & U.

§ Symbolic factorization step:
® Determine locations of nonzeros in L & U.
® Set up data structures for storing nonzeros of L & U.
® Allocate memory for the nonzeros.

§ Numerical factorization step:
® Input numerical values.
® Compute L & U, with pivoting to maintain numerical stability.

§ Triangular solution step:
® Use L & U to perform forward and backward substitutions.

E.G. Ng / 10

Sparse Matrix Factorization

q When numerical stability is not an issue:
§ Ordering, symbolic factorization, and numerical factorization are

often distinct and can be performed separately.
§ e.g., sparse symmetric positive definite matrices, diagonally

dominant matrices.

q Otherwise:
§ These three phases may have to be interleaved during Gaussian

elimination.
§ Why?

E.G. Ng / 11

Ordering Algorithms

q Almost all ordering algorithms are combinatorial in nature.
§ O(n!) choices.

q Difficult to find the “best” permutations.
§ An NP-complete problem [Yannakakis ’83].

q Almost all ordering algorithms are based on heuristics.
§ Ordering for convenience:
® Use simple data structures and to design simple factorization

algorithms.
� Banded orderings – put nonzero entries around the diagonal.

§ Ordering for performance:
® reduce fill as much as possible.
® Often poised as problems of labeling vertices in graphs.
® Two classes of fill-reducing heuristics: local vs global.

E.G. Ng / 12

Banded Orderings vs Fill-reducing Orderings

q Matrices: Defined on k-by-k grids using a 5-point operator.

0

5

10

15

20

25

30

50 60 70 80 90 100 110 120 130 140 150

k

ra
ti
o

Time

Nonzero count

E.G. Ng / 13

Ordering Sparse SPD Matrices (Sparse Cholesky)

q Local heuristics: Do the best locally.
§ Minimum degree [Tinney /Walker ’67; George/Liu ’79; Liu ’85;

Amestoy/Davis/Duff ’94; Ashcraft ’95; Duff/Reid ’95].
§ Minimum deficiency or fill-in [Tinney/Walker ’67; Ng/Raghavan ’97;

Rothberg/Eisenstat ’97].

q Global heuristics: Based on graph partitioning techniques.
§ Nested dissection [George ’73; Lipton/Rose/Tarjan ’79].
§ Multilevel graph partitioning schemes [Hendrickson/Leland ’94;

Karypis/Kumar ’95].
§ Spectral bisection [Simon et al. ’90–’95].
§ Geometric and spectral bisections [Chan/Gilbert/Teng ’94].

q Hybrid of the above two.
§ [Ashcraft/Liu ’96; Hendrickson/Rothberg ’97].

E.G. Ng / 14

Ordering Sparse Nonsymmetric Matrices

q Symmetric ordering of AT+A, if no pivoting.

q Symmetric ordering of ATA, if partial pivoting.
§ Theorem [George/Ng ’87]:
® Suppose the diagonal entries of A are all nonzero.
® Let ATA = RTR and PA = LU.
® Then the sparsity structure of L+U is contained in that of RT+R,

regardless of the choice of P.
§ Making R sparse will make L+U sparse.
® Find a good symmetric ordering Pc from ATA.
® Apply Pc to columns of A [Pc(ATA)Pc

T = (APc
T)T(APc

T)].
§ Column orderings based solely on sparsity structure of A.
® COLMMD in Matlab, COLAMD [Larimore/Davis/Gilbert/Ng ’02].

E.G. Ng / 15

Ordering Sparse Nonsymmetric Matrices

q Nonsymmetric ordering of A.
§ Markowitz scheme [Markowitz ’57].
® Nonsymmetric variant of minimum degree, but apply to all nonzero

entries in matrix.
� cf. complete pivoting for dense matrices.
� Ignore numerical values – numerical factorization may fail.

§ Markowitz with threshold pivoting [Zlatev ’80; Duff/Erisman/Reid
’86].
® Modifying Markowitz scheme by taking numerical values into

consideration ⇒ usually performed during numeric factorization.
§ Diagonal Markowitz ordering of A, if no pivoting [Amestoy/Li/Ng

’02].
® Same as Markowitz, but apply to diagonal entries only.

E.G. Ng / 16

Symbolic Factorization

q Determine the sparsity structure of the factors and set up the
data structures for storing the nonzero entries.

§ Determining the sparsity structure?
® May need to simulate numerical factorization???

⇒ Cost of symbolic factorization is O(flops(LU))???

§ Representing the sparsity structure of the factors?
® Nonzero entries are usually stored by columns.
® May need a row index for each nonzero entry???

⇒ Size of the representation is O(|L+U|)???

§ Updating one column by another column?
® Need index matching or use scatter/gather (indirect addressing)???

⇒ Integer overhead???

E.G. Ng / 17

Notion of Supernodes

q Consecutive columns with essentially identical sparsity
structure can often be found in a triangular factor.
§ A supernode in a triangular factor is a group of consecutive

columns { j, j+1, ..., j+t-1 } such that
® columns j to j+t-1 have a dense diagonal block, and
® columns j to j+t-1 have identical sparsity pattern below row j+t-1.

E.G. Ng / 18

Supernodes in Sparse Cholesky Factor

E.G. Ng / 19

Notion of Supernodes

q Consecutive columns with essentially identical sparsity
structure can often be found in a triangular factor.
§ A supernode in a triangular factor is a group of consecutive

columns { j, j+1, ..., j+t-1 } such that
® columns j to j+t-1 have a dense diagonal block, and
® columns j to j+t-1 have identical sparsity pattern below row j+t-1.

q The supernodes provide a partition of the columns of the
triangular factor.

q Symmetric case: [Ashcraft et al. ’87; Duff/Reid ’83;
Rothberg/Gupta ’91; Ng/Peyton ’93].

q Nonsymmetric case: [Eisenstat/Gilbert/Liu ’93;
Demmel/Eisenstat/Gilbert/Li/Liu ’95].

E.G. Ng / 20

Roles of Supernodes in Factorization

q Let J and K be two distinct supernodes and
suppose k∈K.
§ Column k is modified by either all columns of J

or no columns of J.
§ Multiple columns of K may be modified by all

columns of J.

q Benefits:
§ Permit use of level-3 BLAS to take advantage of cache memory.
§ Reduce inefficient indirect addressing (scatter/gather)
§ Allow a compact representation of the sparsity structure of the

triangular factor.

q How are the supernodes determined [Liu/Ng/Peyton ’93;
Gilbert/Ng/Peyton ’94]?

E.G. Ng / 21

Back to Symbolic Factorization

q Symmetric positive definite matrices:
§ Complexity is linear in the size of the representation [George/Liu

’80].
§ The size of the representation is less than O(|L|).

q Nonsymmetric matrices with partial pivoting:
§ Complexity cannot exceed O(flops(LU)), but more than O(|L+U|)

[Gilbert/Periels ’88; Eisenstat/Liu ’92/’93; Gilbert/Liu ’93].
§ The size of the representation is less than O(|L+U|).

E.G. Ng / 22

Numerical Factorization

q The goal of general sparse matrix factorization algorithms is
to manipulate and operate on nonzero entries only.
§ Unlike dense matrix factorization, integer computation can be non-

trivial.

q They can be “left-looking” or “right-looking”, and are sparse
analogues of dense algorithms.

q New-generation sparse matrix factorizations exploit the
supernodal structure and use level-3 BLAS operations as much
as possible (à la LAPACK).

q Recent developments focus on
§ Superscalar processor with hierarchical memory.
§ Parallelism.

E.G. Ng / 23

Left-looking vs Right-looking

q Left-looking algorithms
for j = 1 to n do

for each k such that Ukj ≠ 0 do
cmod(j,k)

end for
cdiv(j)

end for

q Right-looking algorithms
for j = 1 to n do

cdiv(j)
for each k such that Ujk ≠ 0 do

cmod(k,j)
end for

end for

E.G. Ng / 24

Left-looking vs Right-looking

q Many efficient left-looking sparse matrix factorizations.
§ BlkFct [Ng/Peyton ’90] for sparse Cholesky.
§ SuperLU [Demmel/Eisenstat/Gilbert/Li/Liu ’95] for sparse LU.

q Right-looking algorithms can be inefficient.
§ MA28 [Duff ’77], MA48 [Duff/Reid ’96] for sparse LU.

q Multifrontal methods – an efficient compromise.
§ MA27 [Duff/Reid ’82], MA47 [Duff/Reid ’93] for sparse Cholesky

(and symmetric indefinite).
§ UMFPACK [Davis/Duff ’97/’99] for sparse LU.

q Many implementations for distributed-memory parallel
computers are right-looking.

E.G. Ng / 25

Performance of Sparse Cholesky Factorization

q Matrices: Defined on k-by-k grids using a 5-point operator.
q Left-looking sparse supernodal Cholesky factorization.

k n |A|
Ordering

Time SF Time NF Time Soln Time
Number of
Supernodes

Number of
Indices |L|

50 2,500 7,400 0.02 0.01 0.06 0.04 1,892 15,145 35,943
60 3,600 10,680 0.02 0.02 0.07 0.06 2,720 22,007 54,215
70 4,900 14,560 0.03 0.01 0.11 0.08 3,697 30,376 79,524
80 6,400 19,040 0.04 0.02 0.16 0.11 4,825 39,996 110,462
90 8,100 24,120 0.06 0.03 0.21 0.14 6,102 51,057 145,945

100 10,000 29,800 0.06 0.05 0.27 0.17 7,530 63,209 185,673
110 12,100 36,080 0.08 0.05 0.35 0.21 9,107 77,142 238,524
120 14,400 42,960 0.11 0.06 0.42 0.25 10,835 91,965 289,179
130 16,900 50,440 0.11 0.08 0.51 0.29 12,712 108,411 346,500
140 19,600 58,520 0.13 0.09 0.63 0.34 14,740 126,022 419,198
150 22,500 67,200 0.15 0.10 0.78 0.40 16,917 145,349 496,538

E.G. Ng / 26

Observations

q Symbolic factorization takes very little time.
§ Little (integer) computing required.
§ Hard to improve by parallelization.
§ Only reason to parallelize is because of problem size or matrix

distribution.
§ Parallel implementations have been made for symmetric matrices;

speedups are fair.
® [George/Heath/Liu/Ng ’87; Zmijewski/Gilbert ’88; Gilbert/Hafsteinsson ’90; Ng

’93].

q Ordering can be relatively inexpensive too.
§ Local heuristics are very hard to parallelize.
§ Global heuristics based on graph partitioning – divide-and-conquer

type approaches – can be parallelized.
® ParMETIS [Karypis/Kumar ’96/’97; Schloegel/Karypis/Kumar ’97/’00].

E.G. Ng / 27

Observations

q Numerical factorization and triangular solution are the most
time-consuming.
§ Almost all effort on parallelizing sparse matrix factorization has

focused on numerical factorization.
§ Amestoy, Ashcraft, Demmel, Duff, George, Gilbert, Gupta, Heath, Li, Ng,

Raghavan, Rothberg, Yang, …

q Will discuss parallel sparse triangular solution next time …
q Focus on sparse numerical factorization.

E.G. Ng / 28

Performance of Serial SuperLU

Name n |A| |A|/n |L+U|/|A| #flops (10^6) #flops/|L+U|
1 Memplus 17,758 99,147 5.6 1.4 1.8 12.5
2 Gemat11 4,929 33,108 6.7 2.8 1.5 16.3
3 Rdist1 4,134 94,408 22.8 3.6 12.9 38.1
4 Orani678 2,529 90,158 35.6 3.1 14.9 53.3
5 Mcfe 765 24,382 31.8 2.8 4.1 59.9
6 Lnsp3937 3,937 25,407 6.5 16.8 38.9 91.1
7 Lns3937 3,937 25,407 6.5 17.7 44.8 99.7
8 Sherman5 3,312 20,793 6.3 12.0 25.2 101.3
9 Jpwh991 991 6,027 6.1 23.4 18.0 127.7

10 Sherman3 5,005 20,033 4.0 21.6 60.6 139.8
11 Orsreg1 2,205 14,133 6.4 28.5 59.8 148.6
12 Saylr4 3,564 22,316 6.3 29.3 104.8 160.0
13 Shyy161 76,480 329,762 4.3 23.2 1,571.6 205.8
14 Goodwin 7,320 324,772 44.4 9.6 665.1 213.9
15 Venkat01 62,424 1,717,792 27.5 7.6 3,219.9 247.9
16 Inaccura 16,146 1,015,156 62.9 9.8 4,118.7 414.3
17 Af23560 23,560 460,598 19.6 30.4 6,363.7 454.9
18 Dense1000 1,000 1,000,000 1,000.0 1.0 666.2 666.2
19 Raefsky3 21,200 1,488,768 70.2 11.8 12,118.7 690.7
20 Ex11 16,614 1,096,948 66.0 23.8 26,814.5 1,023.1
21 Wang3 26,064 177,168 6.8 74.9 14,557.5 1,095.5
22 Raefsky4 19,779 1,316,789 66.6 20.3 31,283.4 1,172.6
23 Vavasis3 41,029 1,683,902 41.0 29.2 89,209.3 1,813.5

Test Matrices (ordered using COLMMD)

E.G. Ng / 29

Performance of Serial SuperLU

q Time includes everything except column ordering.

E.G. Ng / 30

Performance of Serial SuperLU

q Show fraction of time in symbolic factorization.
q Show relative strength of integer vs. floating-point speed.
q Roughly carry over to shared memory parallel code.

E.G. Ng / 31

Parallel Dense Numerical Factorization

q Consider a left-looking implementation:
for j = 1 to n do

for k = 1 to j-1 do
cmod(j,k)

end for
cdiv(j)

end for

q Suppose that columns j1 and j2, with j1 ≠ j2, are assigned to
different processors.

q If column k of the factors, with k < j1,j2, are made available to
the processors containing columns j1 and j2, cmod(j1,k) and
cmod(j2,k) can be performed in parallel.

q The cdiv’s have to be completed sequentially.

E.G. Ng / 32

Parallel Sparse Numerical Factorization

q Sparse left-looking factorization:
for j = 1 to n do

for each k such that Ukj ≠ 0 do
cmod(j,k)

end for
cdiv(j)

end for

q As in the dense case, many of the cmod operations can be
performed in parallel.

q Because of sparsity, some of the cdiv’s operations can also be
performed in parallel.
§ Potentially higher degree of parallelism.

E.G. Ng / 33

Parallel Sparse Cholesky Factorization

Cols. 1, 2, 4, 5 can perform
their cdiv’s in parallel.

cmod(3,1), cmod(7,1), and
cmod(8,1) may be performed
in parallel.

E.G. Ng / 34

Identifying Parallel Tasks

q For sparse symmetric positive definite matrices, elimination
tree is a powerful and useful tool.
§ The elimination tree of a sparse Cholesky is an acyclic graph

defined in terms of the first off-diagonal nonzero entries in the
columns of the Cholesky factor [Schreiber ’82; Liu ’90].

E.G. Ng / 35

Identifying Parallel Tasks

q Each vertex in the elimination tree corresponds to a column in
the Cholesky factor.

q The elimination tree can be used to characterize many
properties of sparse Cholesky factorization, as well as the
sparsity structure of the Cholesky factor.

§ All the leaves of the elimination tree correspond to columns whose
cdiv’s are independent and can be performed simultaneously.

§ Suppose that cdiv(j) has been performed. Then there is a
cmod(k,j) if vertex k belongs to the path between vertex j and the
root of the elimination tree.

§ Disjoint subtrees represent independent subsets of columns that
can be computed simultaneously.

E.G. Ng / 36

The Elimination Tree

1 2

3

4 5

6

9

7

8

E.G. Ng / 37

Parallel Sparse Cholesky Factorization

q The elimination tree can be used to identify parallel tasks.

q It can used to assign/schedule work among the processors.
q It can be used to study the load balancing issue.

q How is the elimination tree computed?
§ The complexity of computing the elimination tree from the

sparsity structure of A is O(|A| α(n,|A|)) [Liu ’86].

q The supernodes can be determined once the elimination tree is
known.

E.G. Ng / 38

Parallel Sparse LU Factorization

q For sparse nonsymmetric matrices (with partial pivoting), the
proper tool to use is a directed acylic graph (DAG) [Gilbert/Liu
’93], which has been simplified by the use of symmetric pruning
[Eisenstat/Liu ’92].

q The DAG is not known until the numerical factorization is
performed.

q Instead, use the elimination tree of ATA (also called column
elimination tree of A) [Gilbert/Ng ’93].
§ Served as an upper bound.
§ Can update the tree on the fly as the numerical factorization

proceeds [Demmel/Gilbert/Li ’97].

E.G. Ng / 39

Shared-memory Sparse Matrix Factorization

q Relatively easy to implement.

q Use the elimination tree to guide the assignment of work among
the processors.

q Tasks are usually scheduled dynamically.
§ Gradually removing the “leaves” level by level.

q Load balancing is easy to achieve.

q Relative good performance when number of processors is small
and the cost of synchronization is low.

q [George/Heath/Liu/Ng ’86; Ng/Peyton ’93;
Rothberg/Gupta/Ng/Peyton ’92; Demmel/Gilbert/Li ’99].

E.G. Ng / 40

Distributed-Memory Sparse Matrix Factorization

q Previous approach becomes ineffective on distributed-memory
architectures.
§ The cost of synchronization using message passing becomes

expensive.
q Some algorithmic changes are necessary for distributed-

memory implementation.
§ 2-D block cyclic mapping.
® Parallelize the loops over both rows and columns.

§ In the case of sparse LU, switch to static pivoting (GESP)
® Pivot before numerical factorization so that static data structures

can be used.
® Accommodate possible pivot growth during factorization without

changing data structures [George/Ng ’87].
® Decouple symbolic and numerical phases.

E.G. Ng / 41

Distributed-Memory Sparse Matrix Factorization

q Reducing communication cost is important.
§ [George/Liu/Ng ’89; Geist/Ng ’89; Raghavan ’91].

q Use static scheduling instead of dynamic scheduling.
§ Assign “subtrees” to processors, instead of single columns.
§ Multiple processors can cooperate to compute columns in upper

part of the elimination tree.

E.G. Ng / 42

Performance of SuperLU_MT – Factorization Speed

q Time, Mflops, and speedup on Origin 2000.

q A 3-D flow calculation (EX11).

Matrix n |A| p=1 p=8 Speedup p=18 Speedup
Ex11 16,614 1,096,948 209 33 6.3 20 10.5
Raefsky4 19,779 1,316,789 229 39 5.9 25 9.2
Bbmat 38,744 1,771,722 605 166 3.6 64 9.5
Vavasis3 41,092 1,683,902 598 136 4.4 75 8.0
Twotone 120,750 1,224,224 313 58 5.4 38 8.2

Machine CPUs Speedup Mflops Percent Peak
C90 8 6 2,583 33%
J90 16 12 831 25%
Power Challenge 12 7 1,002 23%
Origin 2000 20 10 1,335 17%
AlphaServer 8400 8 7 781 17%

E.G. Ng / 43

Performance of SuperLU_MT – Factorization Speed

Matrix
|L+U|
(10^6)

Flops
(10^9) p=1 p=4 p=8 Speedup Mflops

Percent
Peak

AF23560 14 6.4 36.2 9.4 6.2 4.9 1,035 13%
EX11 26.2 26.8 75.4 21.2 10.4 6.5 2,538 33%
RAEFSKY4 26.7 31.3 78.3 21 13.1 5.5 2,399 31%

Matrix
|L+U|
(10^6)

Flops
(10^9) p=1 p=4 p=8 Speedup Mflops

Percent
Peak

AF23560 14 6.4 70.8 18.1 11.6 5.8 553 12%
EX11 26.2 26.8 245.3 64.6 34.2 7.1 781 16%
RAEFSKY4 26.7 31.3 288.2 74.1 42.8 6.6 734 15%

Matrix
|L+U|
(10^6)

Flops
(10^9) p=1 p=8 p=18 Speedup Mflops

Percent
Peak

EX11 26.2 26.8 209.6 33.1 20.3 10 1,335 19%
RAEFSKY4 26.7 31.3 229.5 39.2 25.7 9 1,222 17%
BBMAT 50.4 45.5 605.3 166.3 64.1 9 710 10%
TWOTNE 23.9 12.5 313.4 57.9 39.3 8 318 5%

Cray C90

AlphaServer 8400

Origin 2000

E.G. Ng / 44

SuperLU_Dist – Scaling on T3E

q 3D grids, 11-point stencil.
q Grid size increases with number of processors, such that flops

per processor is roughly constant.

E.G. Ng / 45

SuperLU_Dist on Irregular Problems
q Minimum degree ordering on AT+A.

Matrix Discipline Symmetry n |A|
|L+U|
(10^6)

Flops
(10^9)

BBMAT CFD 0.54 38,744 1,771,722 35.9 26.6
ECL32 Device Simulation 0.93 51,993 380,415 41.4 60.6
TWOTONE Circuit Simulation 0.43 120,750 1,224,224 10.7 7.3

E.G. Ng / 46

SuperLU_Dist on Irregular Problems

q Comparing time on Cray T3E and IBM SP.

E.G. Ng / 47

SuperLU_Dist – Impact of Ordering on Scalability

q Matrix ECL32 – Time on Cray T3E.

Ordering
|L+U|
(10^6) p=4 p=32 p=128 p=512 Gflops/s

MMD(A'A) 73.5 325.0 60.5 21.5 14.3 8.5
MMD(A'+A) 41.4 107.4 20.6 11.1 8.9 6.8
ND(A'+A) 24.3 49.0 12.0 8.7 9.6 2.2

E.G. Ng / 48

Application of Sparse Gaussian Elimination

q First solution to quantum scattering of 3
charged particles.
§ [Rescigno/Baertschy/Isaacs/McCurdy, Science,

Dec 24, ’99].
q Need to factor large sparse complex

nonsymmetric matrices.
§ n = 209,764; |A| = 1,046,988.
® Factor nonzero count: 12,838,222.
® Factor time: 2 minutes on 16 processors of

LBNL’s Cray T3E.
§ n = 1,792,921; |A| = 8,959,249.
® Factor nonzero count: 143,643,265.
® Factor time: 48 minutes on 24 processors

of LLNL’s IBM SP (ASCI Blue-Pacific).

E.G. Ng / 49

Summary

q Very brief overview of sparse direct methods.

q Lots of open issues …
§ Parallel ordering algorithms.
§ Parallel symbolic factorization algorithms.
§ Scheduling and load balancing.
§ Complexity of ordering.
§ Numerical algorithms are converging???
§ ...

